
Master of Science in Informatics at Grenoble
Option PDES

Heuristics for HTN Planning

Auteur :
Ye XIA

Responsables :
M. Humbert Fiorino
M. Damien Pellier





Abstract

Hierarchical Task Network (HTN) is an important technique in the domain
of automated planning. However, the heuristic strategies for HTN planning
have not been much investigated.

In this report, we have proposed our Hierarchical Task Network (HTN)
planning heuristic strategies, which help to accelerate the automated plan-
ning process, and also guarantee to find the best solution. The HTN planning
algorithm on which the heuristics are based is also discussed.
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Chapter 1

Introduction

Automated planning, or simply planning, is a branch of Artificial Intelli-
gence. Automated planning is a computational study of the deliberation
process, it is the base of information processing tools which provide afford-
able and efficient planning resources. For over 30 years, many techniques
have been developed to solve the planning problems.

Among the techniques, Hierarchical Task Network (HTN) planning is
the most widely used one for practical applications. HTN planning has
some great advantages: its domain-configurable feature makes HTN plan-
ners work efficiently, and allows the planners to solve complex real-world
problems; HTN provides a convenient way to write problem-solving methods
that correspond to how a human considers. Even though HTN technique has
been widely used, we found that the HTN planners lack heuristics to guide
their searches.

The goal of this research has been to propose the heuristics used in HTN
planning systems, to guide the search to find the best solution of planning
problems quickly.

The report is organized as follows:

chapter 2 introduces the principles of automated planning.

In chapter 3, we explain the principles of HTN planning; then an abstract
HTN planning process is given, it is also the planning process for which we
propose our heuristics; a group of HTN planners we have studied are also
introduced in this chapter.

In chapter 4, we propose our heuristics.

In chapter 5, my implementation works have been discussed.

Finally, chapter 6 concludes and discusses the future works.
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Chapter 2

Automated Planning

In our daily life, we plan the things we want to do before working them
out. The things could be complex tasks like writing a scientific report, they
could also be simpler ones like standing up from a seat. When we plan for
something, we anticipate the outcomes of actions, then we know what to do
(i.e. actions) step by step. Obviously, the planning process is a deliberation
process in which we choose and organize actions. The product of the planning
is a plan to be performed.

2.1 Introduction of Planning

Automated Planning is the reasoning side of acting. The aim of a planner is
to generate a solution plan to achieve given goals. A planner uses knowledge
of the world (e.g. initial world-state, possible actions) to decide what to do
before actually performing it.

As in Figure 2.1, the input world-knowledge of a planning system includes
possible actions, the initial world-state of the problem, the objective, etc.
the output of the planning system is a solution plan. The simplest format
of a plan is a sequence of actions (i.e. a totally-ordered plan).

Figure 2.1: Planning System

• Initial state: The state of the world that we start in.
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• Actions/Operators: Ways of changing the state of the world.

• Objects: Things in the world that interest us.

• Predicates: Properties of objects, they can be true or false.

Different from scheduling in which only certain constraints need to be
considered (e.g. time), planning systems must reason about how the world
changes to make decisions. Many planners need to keep track of world-state
(i.e. the planners need the exact current world state in each step of the
planning process). The world state also helps verifying the availability of
an action. In planning, each action has a precondition and an effect (or
postcondition), the precondition is verified according to the world state, and
the effect indicates how the action changes the world state.

Different from reactive system which makes decisions based only on cur-
rent input, a planning system takes into account the state in the “future” by
anticipating the outcomes of actions.

The action sequences produced by the planning system will be executed
by intelligent agents. The system plays an important role to ensure the
agents’ rational behavior. The automated planning is widely used in the
domains like autonomous robots, space exploration, military logistics, com-
puter games, etc.

2.2 Conceptual Model of Planning System

The conceptual planning system model could be represented as in Figure 2.2:

Figure 2.2: Conceptual Model
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The model consists of the following three components:

• A planner, which produces plans and forwards them to the controller
as actions to execute;
• A controller, which executes the plan according to observations per-

ceived in the environment;
• A state transition system Σ, it models the environment in which

the plan is to be executed. Σ is a 4-tuple, Σ = (S,A,E, γ)[1], where

- S = {s1, s2, s3...} is a finite or recursively enumerable set of states;
- A = {a1, a2, a3...} is a finite or recursively enumerable set of ac-
tions;

- E = {e1, e2, e3...} is a finite or recursively enumerable set of
events;

- γ: S × (A ∪ E)→ 2S is a state translation function.

In Figure 2.2, the execution status is considered only when the planning
is online (i.e. the environment is dynamic). Online planning is not discussed
in this document. We will consider offline planning only.

2.3 Planning Model

Automated planning is inherently complex and causes large search space.
Some planning problems are EXPSPACE-complete. Generally, some as-
sumptions are made to lower the complexity, so that a practical planner
can be designed and realized.

The assumptions of a restricted model[1] and the corresponding assump-
tions of the extended model[1] are as follows :

Assumption 1 (Finite Σ). The system Σ has a finite set of states in which
all the state variables need to be Boolean.

Relexing Assumption 1. In the system Σ, there may exist numerical state
variables and actions that bring new objects, so infinite set of states must
be supported.

Assumption 2 (Fully observable Σ). The system Σ is fully observable, i.e.
the planner has complete knowledge about the state of Σ.

Relexing Assumption 2. The system Σ could only be partially observable,
i.e. not every aspect of Σ can be known.

Assumption 3 (Deterministic Σ). The system Σ is deterministic, actions
have strictly one possible outcome, i.e. for all s ∈ S, u ∈ A∪E : |γ(s, u)| ≤ 1.
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Relexing Assumption 3. Each action or each event may have multiple
alternative effects.

Assumption 4 (Static Σ). The system Σ is static, changes in the environe-
ment are only caused by actions, there is no external events, i.e. E = ∅ or
Σ = (S,A, ∅, γ)

Relexing Assumption 4. There may exist events in the system Σ. The
events change the world state.

Assumption 5 (Restricted Goals). The planner holds only restricted goals
that are given as an explicit goal state sg or a set of goal states Sg.

Relexing Assumption 5. More complex objectives may be required, the
objective can be not only to reach a given state, but also to satisfy some
constraints during the process to the goal state, e.g. some critical states to
avoid, some states that must go through.

Assumption 6 (Sequential Plans). A solution plan is a linearly finite se-
quence of actions.

Relexing Assumption 6. A plan can be partially-ordered. In this case, the
plan is no longer a sequence of actions, the orderings between some actions
may not be defined.

Assumption 7 (Implicit Time). Actions and events have no duration in
state translation systems.

Relexing Assumption 7. Action duration is taken into consideration, so
that some temporally constrained goals can be expressed.

Assumption 8 (Offline Planning). Planner is not concerned with changes
of Σ while it is planning.

Relexing Assumption 8. Planner must consider the dynamic situations
of the system, some objectives must be handled online.

The classical planning problem is under the assumptions of the restricted
model. Our problem model is under the relaxing assumption 6, and other
assumptions of the restricted model.

2.4 Domain-Independent Planning

There are many forms of planning: path and motion planning, perception
planning, manipulation planning, communication planning, etc. They are
all important domains, there exists some domain − specific planners to
solve specific types of problems (path planning, etc). The domain of such a
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planning system will be specified within the planner, so as in Figure 2.3, the
input of a domain-specific planner only includes the description of a problem.

Figure 2.3: Domain-specific Planner

A domain-specific planner works efficiently, but the specification means
less flexibility, their algorithms and the data representations are strictly spec-
ified. Each of them only solves a certain kind of problem, and when we need
to modify the domain, the planner must be modified or even rewritten. On
the contrary, a domain-independent planner is a generic planner that solves
all kinds of problems. As in Figure 2.4, the input of a domain-independent
planner consists of the descriptions of a problem and a domain.

Figure 2.4: Domain-Independent Planner

Domain − independent planners gain flexibility, but their efficiency is
more challenging and it requires a general high-level description language to
specify the information. For example, Planning Domain Description Lan-
guage(PDDL) is a standardization of planning domain and problem descrip-
tion languages. In this report, we focus on domain-independent planning.

2.5 An example : blocksWorld

The domain blocksWorld consists of a set of blocks, a table and a set of robot
hands. The goal is to arrange the blocks into some given goal stacks. In the
domain, we do not care about object positions on the table.
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The constraints of blocksWorld are as follows:

• The blocks can be placed on top of another block or on a table;
• At most one block can be on top of another block, a block that has

nothing on it is clear;
• Any number of blocks can be on the table;
• Robot hand can pick up blocks and stack them on other blocks;
• A robot hand can only hold one block or be empty.

We have simplified the blocks-world domain which consists of a set of
blocks, a single table and a single robot hand, so that some of the constraints
(e.g. constraint for multiple hands’ synchronization) are not discussed in this
report.

For the simplified blocksWorld domain, the constants of the planning
problem are :

• A set of blocks {A, B, C, . . .}

x, y are two blocks, the predicates of the domain are :

. ontable(x) : the block x is on the table,

. on(x,y) : the block x is on top of the block y,

. clear(x) : there is no block on top of the block x,

. handempty : the robot hand is empty,

. holding(x) : the robot hand is holding the block x.

A precondition is a set of predicates. An effect is also a set of predicates.

The actions of the domain are :

. pickup(x) : pick up the block x which is currently on the table, x must
be clear.

. unstack(x,y) : pick up the block x which is currently on top of the
block y, x must be clear.

. putdown(x) : put the block x hold by the robot hand on the table.

. stack(x,y) : put the block x hold by the robot hand on top of the
block y, y must be clear.

For example, the PDDL definition of the action pickup is as follows:
(:action pickup

:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))
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(not (clear ?x))
(not (handempty))
(holding ?x)

)
)

In PDDL, a variable begins with the symbol “?”. The parameter of pickup
is a block x, its precondition is (clear x) ∧ (ontable x) ∧ (handempty), its
effect is (not (ontable x)) ∧ (not (clear x)) ∧ (not (handempty)) ∧ (holding
x). The other actions’ PDDL definitions are in Appendix A.

Figure 2.5: Planning Problem Example

Figure 2.5 is an example of the blocks-world planning problem, the ini-
tial state is : clear(a), clear(b), clear(c), ontable(a), ontable(b), ontable(c),
handempty The goal state is : on(a,b), on(b,c), ontable(c)

A solution plan is : pickup(c) ≺ stack(c,a) ≺ pickup(b) ≺ stack(b,c), the
symbol "≺" indicates the ordering of a pair of actions, for example, A1 ≺
A2 means that action A1 must finish before A2 starts.

Another solution plan is : pickup(c)≺ putdown(c)≺ pickup(c)≺ stack(c,a)
≺ pickup(b) ≺ stack(b,c)

2.6 Planning Metrics

The two solutions of Figure 2.5 achieve the same goal. But obviously, the
second one has some redundant actions, and the first one is better. The
factors that make a solution plan better depends on the application, but
some typical plan quality metrics are as follows:

• Plan cost : every action has a predefined cost, the plan cost is the
sum of the cost of actions in the plan;
• Plan length : number of actions in the solution plan;
• Makespan : time to execute the plan.

The metrics of a planner are as follows:
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• Soundness: if the planner returns a plan, then this is indeed a solution
plan.
• Completeness: if there is a solution plan, then the planner will be

able to find the solution plan.

If a planner is not complete, it is not guaranteed to find a solution when
there exists one. But it is still interesting if an incomplete planner works
with high performance. Generally, a planner which is not sound is senseless.

2.7 Planning Techniques

For over 30 years, many techniques have been developed to solve the problem
of planning and to remove the assumptions described in section 2.3. Among
these techniques, classicalplanning which searches in state-spaces is the
simplest.

Classical planning’s search space can be represented as an oriented graph,
in which, each node is a world state, and each arc is an action. State-space
planning algorithms searches for a path to the goal state through the graph.
Such a path is a solution plan. For example, in Figure 2.6, each node is a
state, each solid arc is an action, the dot arcs indicate that some available
actions and their following states are omitted. The node S0 is the initial
state, S1 is the goal state. In the graph, there exists a path from S0 to S1
which is “stuck(C,B) ≺ unstuck(C,A)”, this path is a solution plan.

Figure 2.6: State Search Space

The planning algorithm generates part of the whole search space to find
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a path to goal state (i.e. to find a solution plan). In classical planning,
there are several kinds of algorithms, such as forward search which is from
the initial state towards the goal state. With the knowledge of the current
state (at the beginning of the search, the current state is the initial state),
forward search only tries available actions from the current node. Then the
following states are obtained according to the effects of the action on the
current state. The algorithm repeats this procedure until it reaches a goal
state or the search has covered the whole graph.

There are many planning techniques which are different from classical
planning. For example, some techniques search in plan − spaces [25], they
work by successively repairing a plan until all conflicts are removed.

The planning techniques using graphs [26] are based on two ideas: reach-
ability analysis and disjunctive repairing technique, which solves one or more
conflicts by using a disjunction of resolvers.

The SAT techniques (SATisfiability problem) encode a planning problem
as a satisfiability problem and then search for a solution based on known
SAT algorithms [27][28]. A planning problem can also be encoded as a CSP
(Constraints Satisfaction Problem) problem [29][30]. The idea of these two
techniques is to benefit directly from the advantages in the two areas.

WithMDP (Markov Decision Process) techniques [31], [32], the planning
problem is converted to develop an optimal policy, i.e. to associate a state
with an action that maximizes the global reward. This technique is widely
used to treat non-deterministic planning problems.

The techniques developed from ModelChecking [33] take uncertainty,
nondeterminism and partial observability of the environment into account.

Finally, HTN (Hierarchical Transition Network) planners [3][6] differ in
the way to search for a plan, they decompose compound tasks recursively to
primitive tasks. More details will be discussed in chapter 3.
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Chapter 3

Hierarchical Task Network
Planning

Hierarchical Task Network (HTN) planning has some similarities to classical
planning (explained in section 2.7): each state of the world is represented
by a set of predicates, and each action defines a deterministic state tran-
sition. However, HTN planning techniques differs from classical planning
approaches in what they plan for and how they plan for it.

In this chapter, firstly, we explain the HTN technique; then we give the
algorithm of an abstract HTN planning procedure; after that, we introduce
a group of best-known HTN planners we studied; finally, we discuss and
conclude the contents of this chapter.

3.1 Definitions and Principles

3.1.1 Task Network (TN)

Different from classical planning, HTN provides another approach to repre-
sent a plan. A task network is a directed acyclic graph. In this graph, each
node is a task, the arcs represent precedence ordering between tasks.

In Figure 3.1, the nodes A, B, C, . . . are tasks, some orderings are: A
≺ B, B ≺ C, B ≺ D, E ≺ C. A task network can be partially ordered.
There exists several possibilities when executing a partially ordered plan. For
example, there is no ordering constraints between C and D, their execution
order is either C ≺ D, or D ≺ C.

13



Figure 3.1: HTN Example

3.1.2 Hierarchical Structure

HTN has a hierarchical structure with two kinds of tasks: primitive task
and compound task. In Figure 3.1, each node (e.g. A, B, C, . . .) is either a
primitive task or a compound task.

A Primitive Task is a task that can be achieved directly by executing
a corresponding action.

A Compound task is a high-level action (HLA) which must be refined
to a group of primitive tasks before execution.

In Figure 3.2, the compound task is to reverse a stack, this compound
task needs several primitive tasks to be achieved.

Figure 3.2: Compound Task Example

In Figure 3.3, the compound tasks Clear(x) is to achieve the predicate
clear(x), it has several possible refinements which lead to different states.

Figure 3.3: Compound Task Example 2
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3.1.3 Constraints

In HTN planning, constraints are used to constrain the HTNs. There are
two kinds of constraints[3], if n and n’ are tasks’ labels in a HTN,

• Ordering Constraint. Ordering constraints are of the form n ≺ n’,
it indicates that n must finish before n’ starts. n and n’ both can be
primitive task or compound task.

In a more general case, instead of an individual node label like n or n’,
we use first[ni, nj , . . .] and last[ni, nj , . . .] to refer to the first task and
the last one in execution respectively.

• State Constraint.p is a predicate, state constraints are as follows:

- Before constraint is of the form (n, p), which indicates that
predicate p must be satisfied before the task n starts;

- After constraint is of the form (p, n), it indicates that p must
be satisfied after the task n finishes.

- Between constraint is of the form (n, p, n’). It indicates that
p must be true in all states between n and n’.

A causal link reflects the interaction between two tasks. ai and aj are
tasks in a HTN, a causal link is noted as : ai

p−→ aj , p is a predicate which
is part of aj ’s precondition, the causal link indicates that p is satisfied by
executing ai (i.e. p is part of ai’s effect) and the order ai ≺ aj .

There is a flaw if a state constraint is not satisfied. There are two kinds
of flaws, threat and open-link. A threat breaks a causal link.

• A threat is noted as : ak, ai
p−→ aj , ak is an action which threatens

the causal link ai
p−→ aj , i.e. ¬p is part of ak’s effect, and ak is ordered

between ai and aj .
• An open link is noted as :

p−→ ai, ai’s precondition is not satisfied, p
is the corresponding predicate.

3.1.4 Hierarchical Task Network (HTN)

A HTN is a collection of tasks together with constraints, which is repre-
sented as: ( (n1: t1) . . . (nm: tm), C ), where
- each ti is a task;
- C is a set of constraints;
- each ni is a label for the task ti.
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Figure 3.4: An example HTN: t1

The HTN t1 in Figure 3.4 is represented as:

( (n1: Clear(B)) (n2: insert(B, F)) (n3: Clear(D)) (n4: insert(D, B)), (n1
≺ n2) ∧ (n3 ≺ n4) ∧ (n2 ≺ n4) ∧ (n1, clear(B)) ∧ (n3, clear(D)) ∧ (n2,
on(B,F)) ∧ (n4, on(D,B)) )

3.1.5 Method

Each method specifies a way to decompose a compound task into a set of
subtasks through associating the compound task with a HTN (i.e. its refine-
ment). A compound task can have several relevant methods (i.e. has several
possible refinements). A refinement of a compound task can still contain
compound tasks, a method can even be recursive.

We have extended PDDL to support HTN, an example method defined
in PDDL is as the follows:

(:method reverse
:parameters (?x - block)
:precondition(and (handempty) (on ?y ?x) (ontable ?x))
:expansion (

(tag a (reverse(?y)))
(tag b (pickup(?x)))
(tag c (stack(?x, ?y)))

)
:constraints(

(series a b c)
(after (and (handempty) (ontable ?x) (clear ?x) (clear ?y)) a)

)
)

The name of a method is the same to its corresponding compound task.
In the example, the method contains:

relevant compound task : reverse(?x - block)
precondition : handempty ∧ on(y, x) ∧ (ontable(x)
refinement : ( (a: reverse(y)) (b: pickup(x)) (c: stack(x, y)), (a ≺
b) ∧ (b ≺ c) ∧ (a, handempty) ∧ (a, ontable(x)) ∧ (a, clear(x)) ∧ (a,
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clear(y)) )

A refinement consists of an expansion (i.e. the set of subtasks) and a
group of constraints. In an expansion, “tag” is the key word to indicate the
label of a task. A label is necessary, since the same task instance may repeat
in a HTN, the labels help to identify the tasks in the constraints, a label
can not repeat within a method. In the constraints, “series” is a key word
to indicate the ordering constraints, in the example, the ordering of tasks
is reverse(y) ≺ pickup(x) ≺ stack(x, y). “after” is to indicate an after state
constraint. When task stack(x, y) finishes, (handempty) ∧ (ontable x) ∧
(clear x) must be satisfied. Other key words “before” and “between” indicate
the corresponding constraints. Other method definitions are in Appendix C.

Methods provide additional knowledge to the planning process. A HTN
planner do not need to search a complete state-space but to try several
known possible decompositions. Thus, HTN’s search space has been reduced
compared with classical planning.

3.1.6 HTN Planning

Some differences between HTN planning and classical planning are as follows:

Classical Planning HTN Planning
Objective Achieve a goal state Perform a task
Planning
procedure

Search for a sequence of ac-
tions that lead to the goal
state

Incrementally refine the tasks
until reaching an implementa-
tion

Table 3.1: Classical Planning vs HTN Planning

Different from state-space planning, HTN planning searches in plan-
space, each node in the search space is a partially-specified plan, each arc
is a refining procedure. Refining is the procedure of replacing a compound
task with its refinement and updating the corresponding constraints. An
implementation is a refinement of a HTN which contains only primitive
tasks.

An HTN planning domain consists of a set of operators and a set of
methods. Planning process proceeds by refining compound tasks into smaller
and smaller tasks, until an implementation has been achieved which can be
performed directly.
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3.2 Abstract HTN Planning Procedure

Before introducing the abstract HTN planning procedure, we give some def-
initions firstly as follows:

A HTN is a pair w = (U,C), where U is a set of tasks and C is a set of
constraints.

A method is a 3-tuple m = (task(m), expansion(m), constr(m)) in
which the elements are described as follows:

• task(m) is the relevant compound task,
• expansion(m) is a set of subtasks,
• constr(m) is a a set of constraints,
• (expansion(m), constr(m)) is a HTN to refine to.

Suppose that w = (U,C) is a HTN, u ∈ U is a task, m is a method
instance and task(m) = u. Then m refine u into expansion(m), producing
the HTN

σ(w, u,m) = ((U − {u}) ∪ expansion(m), C ′ ∪ constr(m))

where C ′ is the following modified version of C. p is a predicate, v is another
task in w, the modification is shown as follows, the item before “→” is the
constraint to be replaced, the one after is its replacement.

• After constraint (u, p) → (last[expansion(m)], p)
• Before constraint (p, u) → (p, first[expansion(m)])
• Between constraint

- (v, p, u) → (v, p, first[expansion(m)])
- (u, p, v) → (last[expansion(m)], p, v)

• Ordering constraint

- (v ≺ u) → (v ≺ first[expansion(m)])
- (u ≺ v) → (last[expansion(m)] ≺ v)

An HTN planning problem is a 4-tuple P = (s0, w,O,M) where s0 is
the initial state, w is the initial HTN, O is a set of operators, and M is a set
of methods.

A linearization of a partially-ordered plan is a totally-ordered plan
which satisfies all the ordering constraints of the partially-ordered plan. For
example, the plan (or HTN) in Figure 3.5 has two linearizations: A ≺ B ≺
C and A ≺ C ≺ B.
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Figure 3.5: A partially-ordered plan

A solution plan is a partially-ordered plan, each of its linearizations
satisfies all the state constraints of the HTN.

An abstract HTN planning procedure is as follows:

Algorithm 1: Abstract HTN Planning Procedure
Input: a planning problem P = (s0, w,O,M)

1 open ← {w} ;
2 while open 6= ∅ do
3 nondeterministically choose a HTN ν ∈ open ;
4 remove ν from open ;
5 if ν = (U,C) is primitive then
6 if all constraints in C are satisfied then return ν;
7 else
8 nondeterministically choose a task u ∈ ν ;
9 active ← {m ∈M | task(m) is relevant to u} ;

10 if active 6= ∅ then
11 for each method m ∈ active do
12 µ← ((U - {u}) ∪ expansion(m), C ′ ∪ constr(m));
13 add µ to open ;

14 return failure ;

In line 1, the algorithm begins with the input initial HTN, which is stored
in open. open is a list of HTN, it is used to store all the generated HTNs
during the search.

In line 3-4, a HTN ν is popped from open, it has been chosen non-
deterministically, a deterministic choice will be discussed in chapter 4.

In line 5-6, if the selected HTN is primitive (i.e. an implementation),
we check if all the constraints within the HTN has been satisfied, if so, we
return the HTN which is a solution.

In line 7-9, if the selected HTN is not an implementation, which means
there exists still compound tasks within the HTN. Then one of the com-
pound tasks is chosen non-deterministically, and all its relevant methods
will be stored in active. A deterministic choice of compound task will also
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be discussed in chapter 4.

In line 10-13, if active is not empty, each relevant method will be ap-
plied, we use m to refine the selected compound task, an updated HTN will
be obtained and stored in µ, then it is added in open to be considered in
following iterations.

In line 14, if open is empty, which means all possible refinements have
been tried without finding a solution, there is no solution to the input plan-
ning problem, the algorithm returns failure.

algorithm 1 is sound and complete.

3.3 Related Work

The basic ideas of HTN planning were developed more than 25 years ago in
works of Sacerdoti [1, p. 460] and in Tate’s Nonlin planner [1, p. 503]. HTN
planning has been more widely used in planning applications than any other
classical planning techniques, e.g., in production line scheduling [1, p. 549],
crisis management and logistics [1, p. 72] [1, p. 135], etc.

The first step toward a theoretical model of HTN planning is taken by
Yang [1, p. 558] and Kambhampati [1, p. 301]. A complete model was
developed by Erol [1, p. 174]. This model provided the basis for complexity
analysis [1, p. 175] and the first provably correct HTN planning procedure
(the planning procedure 1 is based on this work).

Some best-known domain-independent HTN planning systems are listed
below.

UMCP [3] [4] [1, p. 174] is an implementation of the first provably sound
and complete HTN planning algorithm. UMCP searches by iteratively refin-
ing a non primitive HTN to a primitive one. In each iteration, a non-primitive
task is selected non-deterministically, one of its relevant methods will be cho-
sen to refine it, then according to this refinement, a new HTN is created.
Once a primitive HTN is created, it will be returned if all the constraints of
the problem are satisfied, or the planner backtracks. To reduce the amount
of backtracking, UMCP calls a function for detecting and resolving the flaws
caused by interactions among tasks.

SHOP [6] [7] (Simple Hierarchical Ordered Planner) plans for tasks in the
same order as their execution, thus it can always keep track of world-state
during the planning process. With the knowledge of the current state, SHOP
gains planning efficiency, it refines non-primitive tasks only with the available
methods (i.e. a method whose precondition and also the precondition of the
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first task of the method’s refinement are satisfied), so that the search space is
reduced compared to UMCP; it also gains expressive power, since the knowl-
edge of current world-state allows using dynamic expressions (e.g. numeric
expressions, calling external programs). But these features force SHOP to
do a forward search from the first task to the last one as the tasks’ execu-
tion ordering, and the result plan is limited to be totally ordered. SHOP
is sound and complete, but it suffers from backtracking. When there is no
applicable method to decompose a non-primitive task, it backtracks to guar-
antee the completeness. There can be several possible ways to decompose
a non-primitive task, backtracking happens after a non-primitive task has
not been decomposed with the proper method. However, in SHOP, methods
are chosen non-deterministically, and it is hard to decide which node in the
search space to backtrack to.

M-SHOP [8] (Multi-task-list SHOP) generalizes SHOP by allowing the
initial HTN to be partially ordered, thus the refinements of non-primitive
tasks may be interleaved when executing the plan. The interleaving allows
removing duplicated actions. M-SHOP does not guarantee to remove all the
duplicated actions, and the solution plan is not guaranteed to be optimal
(i.e. result plan with the smallest length). The interleaving may cause task-
interaction issues. To deal with the issue, in M-SHOP, protection request and
protection cancellation are defined in action effects. A protection request is
to guarantee a predicate. The predicate guaranteed must be satisfied before
the protection is canceled. M-SHOP uses a global list to store the protection
list.

GoDel [9] (Goal Decomposition with Landmarks) is motivated by the fact
that planners have methods which only solve some subproblems, but not
the top-level problems. Instead of a HTN, GoDeL uses a goal network as
input. A goal network is a partial order network which guides the algorithm
to achieve the final goal step by step, each node in the network is a world
state, the final node is the final goal state. The definition of method in
GoDeL is also different, it does not have the HTN to refine to, instead, it
has a sub goal network to indicate the steps to achieve the goal. In GoDeL,
both methods and subgoal inference are used to decompose a task to sub-
tasks (i.e. add subgoals into the goal network). Subgoal inference is based
on landmarks. A landmark for a planning problem P is a fact that is true at
some point in every plan that solves P, so it is considered as a subgoal that
every solution to P must satisfy at some point. The algorithm performs a
forward search from the initial state, it keeps track of the current state. By
combining classical planning and HTN planning, GoDeL supports incomplete
domains, no matter the domain knowledge is complete, it is always sound
and complete.
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Angelic The basic idea of Angelic [10] is to plan in a higher level. Angelic
needs an additional goal description G (a set of literals) to resolve a planning
problem and two sets of reachable states called Overstated (i.e. superset)
and Understated (i.e. subset). These two sets can be considered as MAY
and MUST reachable states respectively. If MUST ⊆ G, ADD A VERB then
arbitrary implementation of the HTN achieves the goal. If MAY ∩ G = ∅,
there is no need to continue to refine the plan which will never lead to the
goal state. With deeper refining, a non-primitive task’s reachable states will
be exacter, so when goal state is inMAY but not inMUST, the non-primitive
tasks in the plan need to be refined.

The algorithm does a top-down, forward search (i.e. from the top-level
non-primitive task to a primitive plan, from the first task to the last one
as the tasks’ execution order), it is sound and complete, and the plan is
totally-ordered. With the help of non-primitive task description, refining
is performed only when it is necessary, so that the algorithm can avoid
backtracking.

The extended version[11] of Angelic considers cost of actions, it gener-
ates provably optimal plans or generate nearly optimal plans with better
performance. Its heuristics is inspired from A* algorithm, the heuristics use
the data structure of abstract lookahead tree (i.e. lookahead tree adapted for
non-primitive task). The algorithm’s basic idea is the same to the original
version, each node of the abstract lookahead tree has an optimistic cost and a
pessimistic cost, the optimistic cost will be infinite for the nodes from which
the goal states is unreachable. So the plan with the lowest optimistic cost
will be refined prior to others. When an exact cost is obtained, the plans
whose optimistic cost is greater than the obtained value will no longer be
considered.

Yoyo The main idea of Yoyo[12] is to combine HTN with BDD (Binary De-
cision Diagram) for planning in non-deterministic domain. In non-deterministic
domain, each action can have several alternative effects (i.e. the actual ef-
fect of an action is randomized), but the plan must work despite the non-
determinism, so all possible effects (or all possible following states) must be
considered, any state which leads to a dead end (i.e. no further refining can
be done, but the goal state is not yet achieved) forces the algorithm to return
a failure.

To guarantee that every execution path (multiple execution path is caused
by different action effect) leads to the goal state, the returned plan is also
different from other planners, it returns a list of situations (a situation is a
pair of state and action), it indicates appropriate action according to the ob-
served state. Yoyo does a forward search, in each iteration of the algorithm,
it chooses a task without predecessor in the HTN, and it searches with the
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knowledge of the current state, so only applicable actions are considered in
each step. Yoyo is both sound and complete.

BDD is used to represent a set of states in Yoyo. With the help of BDD,
Yoyo realizes a set-based search, so that it avoids to search for each state
separately and gains efficiency. To represent a set of states, the BDD does
not need to list the propositions for which both arcs lead to the same terminal
node, so an appropriate use of BDD also reduces the memory consumption.

HiPOP [13] (Hierarchical Partial-Order Planner) combines HTN and par-
tial order planning (POP) [Add ref 50 Ghallab’s book]. It supports optional
user-defined non-primitive tasks and methods. HiPOP is both sound and
complete.

If there is no non-primitive task defined, HiPOP works in the same way
as a classical POP algorithm. The initial plan of classical POP consists of
two dummy actions as and ae, as is the first action of the result plan, and ae
is the last one. Precondition(as) = ∅, Effect(as) = I; Precondition(ae) = G,
Effect(ae) = ∅. Obviously, if I 6∈ G, the plan is initialized with an open-link
to repair. All generated plans for repairing a flaw are inserted into an open
plan list. For each iteration, a plan which is not yet explored in the open list
will be chosen and removed from the open list. According to the heuristics,
the chosen plan should be the one which is most likely to be a solution. If
the chosen plan does not contain any flaw, it will be returned. Otherwise,
one of its flaws will be chosen and repaired. The algorithm stops and returns
failure if the open list has been empty while no solution is found.

Extended from classical POP, HiPOP plans with non-primitive task.
Each non-primitive task is considered as an abstract flaw, so a solution plan
must be primitive. To take the advantage of non-primitive task, only non-
primitive task is allowed to be directly added into the plan for repairing flaws,
primitive actions can only be added through refining. In this way, through
the additional knowledge provided by methods, the planning is guided as
much as possible.

A* algorithm has been used as the plan heuristics. For flaw heuristics, the
general order is: threat > open-link > abstract flaw (a > b means that a is
prior to b), threats with the fewest resolvers will be solved firstly. Generally,
open-links is solved earlier than abstract flaws, so that the algorithm deals
with smaller plans during search process. Otherwise, after all the refining
have been done, a huge plan with many flaws is likely to be generated.

IMPACTing SHOP [16] integrates SHOP and IMPACT [15] multiagent
environment. In this work, although the environment is a Multiagent Sys-
tem, the planning is centralized, and it supports only a single planner while
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other agents are considered as information sources. Among IMPACT agents,
there exists some special agents such as: statistics agent, monitoring agent,
supplier agent which is for supporting calling external functions; math agent
which supports numerical expressions.

To support the planner to interact with external agents (i.e. informa-
tion sources), in the planning algorithm A-SHOP (agentized SHOP), the
preconditions and the effects of actions have been replaced with code-calls,
a code-call is a function call to other IMPACT agent. Direct execution of
these code-calls cause difficulties when the algorithm needs to backtrack,
since code-calls affect other agents’ states. To solve this problem, a moni-
toring agent monitors the code-calls without executing them, the code-calls
are actually applied only when the apply function is called.

A code-call is an arbitrary software function, thus the algorithm is sound
and complete only when code-calls are strongly safe, which guarantees the
finiteness of a function call.

CoRe Plannner [18] has a multiagent planning model which cooperates
agents for achieving a common goal. The system has combined the advan-
tages of POP and HTN, POP is adapted to concurrent planning in dis-
tributed environment, HTN has advantages in both efficiency and expressiv-
ity. Agents’ partial knowledge and heterogeneous skills are also supported
in the system.

The system plans for achieving a given goal state G, all the agents search
within a global shared search space. The search space is represented with a
Directed Acyclic Graph (DAG), whose nodes are partial plans. The nodes
are allowed to contain flaws which are considered as promises, the flaws
become new goals in the following planning. Each agent can refine, refute
or repair a partial plan (i.e. a node in the DAG), and records other agents’
propositions.

The initial plan is the same as in Classical POP ( in explanation of
HiPOP). Then in each iteration of the algorithm, one of the non-terminal plans
(i.e. at least one refining or repair or refutation is applicable) which is not
yet explored will be chosen. If the chosen plan does not contain any flaw,
the agent proposes a “success”. Otherwise, one of its flaws will be chosen, if
the flaw is an open-link, it will be solved by adding a causal link or by the
HTN-based refinement mechanism; if the flaw is a threat, the system will
try to repair it. All the generated plans for solving a flaw are added in the
DAG.

When an agent proposes a “success” (resp. failure) and wait for responses
of other agents, the other agents verify whether the proposed plan is a solu-
tion plan (resp. whether this agent is not able to provide a possible solution)
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with their own knowledge. If the proposition is accepted by all the agents,
the planning process ends. Otherwise, the system goes back to the planning
phase.

The system is both sound and complete. The solution plan is partially-
ordered. A* algorithm is applied as the plan heuristics. For flaw heuristics,
a flaw with the fewest resolvers will be chosen.

3.4 Discussion and Conclusion

Compared with classical planners, the primary advantage of HTN planner is
their additional knowledge representation and reasoning capabilities. With
a good set of methods, HTN planners can solve classical planning problems
orders of magnitude more quickly than classical planners.

All the Classical Planning problems can be translated to HTN planning
problems, HTN planning is even more expressive than classical planning.
HTN planners can represent and solve a variety of non-classical planning
problems. For example, we need to reverse a stack and then reverse it back
as in Figure 3.6. Obviously, the initial HTN is “reverse(A) ≺ reverse(B)”,
we can get a solution after HTN planning process. However, in classical
planning, the problem will be as in Figure 3.7, we always get an empty plan
since the goal state is right the same as the initial state.

Figure 3.6: Expressivity Example: HTN

Figure 3.7: Expressivity Example: Classical Planning

The primary disadvantage of HTN planners is the need for the domain
author to write not only a set of planning operators but also a set of methods.

The basic ideas of the planners we have studied are as follows: UMCP
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refines compound tasks in an arbitrary order. SHOP simplifies the planning
process to be in the same order as execution. M-SHOP allows un-ordered
tasks in initial HTN. GoDeL combines HTN with classical planning to sup-
port incomplete domain. Angelic avoids backexpansioning through HLA
descriptions. Yoyo combines HTN with BDD to support non-deterministic
domains. IMPACTing SHOP combines SHOP with IMPACT to support
multiple information sources. Both the CoRe and HiPOP combine POP
with HTN.

Among these planners, SHOP, M-SHOP, GoDeL, Angelic, Yoyo and IM-
PACTing SHOP keep track of the world-state, they do a forward search step
by step from the initial state. They loose flexibility, but they gain efficiency,
since only available methods will be applied. UMCP chooses arbitrary com-
pound task in a HTN to refine, but it is not as efficient as the planners like
SHOP. CoRe and HiPOP both based on POP and HTN, they repair flaws
during the planning process, which do not require exact world states, but
they are rather POP planners, POP is the base of their planning process,
HTN is only a strategy to increase the efficiency. HTN works differently in
the two systems, HiPOP uses HTN to support abstract actions, in the CoRe,
HTN is used in flaw repairing. The current version of HiPOP only supports
single agent planning, while the unified framework is a multiagent planning
system.

HTN planning is efficient, expressive, and widely used. However, among
the above HTN planners, there is no heuristics except the extended Angelic,
whose heuristics is based on HLA description. The heuristics play an im-
portant role in automated planning for improving system’s performance, we
are proposing our heuristics without the information of HLA description in
chapter 4.
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Chapter 4

HTN Planning Heuristics

In automated planning, finding a solution is an exponential problem. There-
fore, heuristics are necessary to speed up the searches. Heuristic strategies
have been very successful for state-space searches, and state-space planners
are widely used by AI community [20, 21, 22]. On the contrary, to our knowl-
edge, HTN heuristics have not been very much investigated. Performances
of HTN planners are based on knowledge abstraction and refinement of the
search space.

However, in HTN algorithms (see algorithm 1), there are several non
deterministic choices that are opportunities for heuristic choices in deter-
ministic implementations of these algorithms: we need to choose a HTN in
the openList structure (see section 4.2); then in the chosen HTN, we select
a compound task to refine (see section 4.3).

In this section, firstly, we remind the principle of A* algorithm; then we
explain our heuristics for choosing a HTN network from the openList; after
that, we introduce the algorithm to calculate the minimum distance between
two states; finally, our heuristic for choosing a non-primitive task in a HTN
will be discussed.

4.1 Reminder on A* Algorithm

A* [23] is a search algorithm which aims at finding a least-cost path between
two nodes in a graph. A* search begins from the initial node, it searches
within current reachable nodes in each step. For example, in Figure 4.1, the
graph is a grid, the blue node is the initial node. In the first step of the
search, the green nodes are reachable, then in the second step, the yellow
nodes are reachable. The white node are non-reachable nodes in the first
two steps.
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Figure 4.1: Reachable nodes example

Different from Dijkstra’s algorithm, A* does not search all the reachable
nodes, it does a best-first search, in each step, only the nodes with the
lowest cost are searched. The evaluation of nodes is through a knowledge-
plus-heuristic function, the function is as the follows:

f(n) = g(n) + h(n), where

• n is a node in the search space;

• f(n) is the cost function;

• g(n) is the past cost function, which is the known distance from the
initial node to n;

• h(n) is the future cost function (or heuristic function), which is the
estimated cost from n to the goal.

Through the cost function, A* avoids expanding paths that are already
expensive. The higher h(n) is, the fewer nodes A* expands and the faster
A* is. But if h(n) is greater than the true cost of moving from n to the goal,
A* does not guarantee to find the shortest path.

On the contrary, if h(n) is always lower than (or equal to) the true cost,
A* is guaranteed to find one of the shortest paths, while A* will be slower.
An extreme example is h(n) = 0, in this case, the algorithm works in the
same as Dijkstra’s algorithm. A heuristic function h(n) is admissible if the
distance to the goal is never overestimated (i.e. h(n) ≤ h∗(n), where h∗(n)
is the true cost to reach the goal from n), an admissible h(n) guarantees to
find the shortest path.

The best case is that h(n) always equals exactly to the true cost, then
A* gets the shortest path without expanding meaningless nodes, but it is
difficult to make this happen in all the cases.
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4.2 Choice of HTNs

The goal of our heuristics is to guide the planning algorithm to find the
best solution as quick as possible. There are several metrics to assess plan’s
quality (as explained in section 2.6). In our work, we use plan’s length as
the metric. So the best solution is the solution whose length is the lowest
among all the solutions of a planning problem.

HTN’s hierarchical structure makes it difficult to get the length of a future
solution. Since a non-primitive task may have several possible refinements,
we cannot know exactly the length of the final solution before having refined
all non-primitive tasks in to primitive ones.

We propose to see the abstract HTN procedure (see algorithm 1) as the
A* algorithm: the cost function of our heuristics is f(ν) = g(ν) + h(ν),
where ν is a HTN. We consider the length of primitive tasks in a HTN as
the past cost g(ν), the length caused by non-primitive tasks is considered as
an estimation of the remaining cost h(ν) to build a primitive HTN.

4.2.1 h1: A Naive Approach

A naive idea is that a small HTN is more likely to lead to a short solution.
The heuristics f(ν) = g(ν) + h(ν) is as follows:

• g(ν) is the number of primitive tasks in ν;

• h1(ν) is the number of non-primitive tasks in ν.

This heuristic is quite simple. But, is this heuristic admissible? To
answer, consider the method do_nothing() below:

(:method do_nothing
:parameters ()
:precondition(. . . )
:expansion ()
:constraints()

)

The non-primitive task do_nothing() contains no primitive task, but the
heuristic function h1(ν) will return 1. In other words, it is overestimated in
the cost function, which may lead to a non-best solution. So this heuristic
is not admissible.

In this approach, the weights of primitive tasks and non-primitive tasks
are the same. However, generally, a non-primitive task contains more than
one primitive tasks, which should weight more than a primitive task.
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4.2.2 h2: A Preciser Approach

To consider the different weights of tasks, we precise the non-primitive tasks
through their refinements. A preciser approach is as follows:

• g(ν) is the number of primitive tasks in ν

• h2(ν) =
∑

t ∈ NPT (ν)

min{length(r) | r ∈ refinements(t)}

In h2(ν), the function NPT (ν) returns the set of non-primitive tasks in
ν, refinements(t) is the set of all possible refinements of t (each relevant
method of t corresponds to a refinement). Among all the possible refine-
ments, only the one with the minimum length is counted, since the shortest
refinement is more likely to lead to the best solution values.

This approach is still not admissible, since the refinement of a non-
primitive task may still contain non-primitive tasks. For example:

(:method try_something
:parameters ()
:precondition(. . . )
:expansion(

(tag a (do_nothing))
)
:constraints()

)

The refinement of try_something contains only a non-primitive task do_nothing,
try_something is estimated as 1, but its true cost is 0. As h2(ν) can be over-
estimated, this approach is not admissible.

4.2.3 h3: An Admissible Search

An admissible search is as follows:

• g(ν) is the number of primitive tasks in ν

• h3(ν) =
∑

t∈NPT (ν)

min{Length(r) | r ∈ Implementations(t)}

Implementations(t) is the set of all possible implementations of t. In this
approach, to get the weight of a non-primitive task, the task must be refined
to primitive but without taking into account the constraints. The weight
is much more informative, and therefore increase the planning performance.
It can be relatively expensive to calculate h3(ν) dynamically. Thus, we
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recommend to compute statically h3(ν) for each non-primitive task of the
planning problem during the preprocessing step, instead of in a dynamic way.
We analyze for each non-primitive task its minimum implementation length
only with the information within the planning domain. The algorithm to
compute h3(ν) is given by algorithm 2.

Algorithm 2: Non-primitive Task Length Analysis
Input: a method set METHODS
Output: a dictionary d (key: non-primitive tasks, value: minimum

length)

1 TASKS ← ∅;
2 for each m ∈ METHODS do
3 TASKS ← TASKS

⋃
NonPrimitiveTasks(m);

4 d ← ∅;
5 for each t ∈ TASKS do
6 d[t] ← 0;

7 isFinish ← FALSE;
8 while ¬isFinish do
9 isFinish ← TRUE;

10 for each t ∈ TASKS do
11 length ← ∞;
12 for each m ∈ RelevantMethods(t) do
13 l ← 0;
14 r ← GetRefinement(m);
15 for each task ∈ GetTasks(r) do
16 if IsPrimitive(task) then
17 l ← l + 1;

18 else
19 l ← l + d[task];

20 if l < length then
21 length ← l;

22 if length > d[t] then
23 d[t] ← length;
24 isFinish ← FALSE;

25 return d;

In line 1-3, the methods defined in the input domain are traversed, the
function NonPrimitiveTasks(m) returns the associated compound task of
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the method m. The variable TASKS is the set of all non-instantiated com-
pound tasks in the input domain.

In line 4-6, the dictionary d is initialized. The key set is non-instantiated
compound tasks. All the values are initialized as 0.

In line 7-9, the variable isF inish controls the algorithm’s iteration. The
loop stops only when d is no longer updated, which means d contains the
same values as the previous iteration.

In line 10, the algorithm traverses all compound tasks, t is the currently
considered task.

In line 12-14, the function RelevantMethods(t) returns all t’s relevant
methods (i.e. the methods used to decompose t), each relevant method will
be tried. To make sure the variable length stores t’s minimum implemen-
tation length, length is initialized as ∞. GetRefinement(m) returns the
refinements of m.

In line 15-19, the function GetTasks(r) returns the set of tasks within
the HTN r. The algorithm checks whether each task is primitive or not. If
the task is primitive, the task counts 1 as in line 17; if not, it counts d[task]
which is the current minimum implementation length of the compound task
task.

In line 20-21, l stores the minimum implementation length of methodm’s
refinement, if l is lower than the variable length, length will be updated.

In line 22-24, length stores t’s minimum implementation length through
all relevant methods; if it is higher than the previous minimum length d[t], we
update the value d[t], and set isF inish to be false so that the loop continues
to see if this update leads to other updates.

For example, suppose that in a planning domain, there are 4 non-instantiated
compound tasks, t1, t2, t3, t4. t1 has 3 relevant methods, they contain 5 prim-
itive tasks, 3 primitive tasks and t2, 4 primitive tasks and t4 respectively.
As in Table 4.1, d[t1] = min(5, 3+d[t2], 4+d[t4]). The other tasks’ possible
refinements are represented similarly. In each iteration of algorithm 2, d[t]
= min(. . .) will be done through line 12-21. In algorithm 2, the procedure
of d’s update is given Table. 4.1.

iteration of algorithm 1st 2nd 3rd 4th 5th
d[t1] = min(5, 3+d[t2], 4+d[t4]) 3 4 4 5 5
d[t2] = min(1+d[t3], 1+d[t4]) 1 1 2 2 2
d[t3] = min(0+d[t4]) 0 1 1 1 1
d[t4] = min(1) 1 1 1 1 1

Table 4.1: Compound Task Length Analyse Procedure Example
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In this table, the dictionary d does not change from the 4th iteration to
the 5th, so the algorithm stops and returns d at the 5th iteration.

With the knowledge of non-primitive tasks’ minimum implementation
length, h3(p) will never overestimate a HTN; this approach is admissible. In
this way, only the HTNs that can be shorter than the current best solution
are searched, and the search-space is reduced.

4.3 Choice of Tasks

4.3.1 Heuristic Principle

Once a HTN is chosen, to choose a non-primitive task (as in algorithm 1),
in our heuristics, we propose to always choose the "easiest" one. As in
Figure 4.2, an easy task is a non-primitive task whose refining is not time-
consuming.

Figure 4.2: Easy and Hard Tasks

Suppose that a HTN consists of five non-primitive tasks (see Figure 4.2),
t1, t2, t3, t4 and t5, whose complexities are in ascending order, and that
the only flaw occurs when refining t3. Obviously, we will spend less time
to detect this HTN does not lead to a solution with the following refining
ordering: t1 < t2 < t3 < t4 < t5 than with t5 < t4 < t3 < t2 < t1 (ti < tk
means that ti is refined before tk).

Our heuristic strategy is to refine "easy" tasks before "complex" ones,
so that the planning process will be less time-consuming, since the planning
from a HTN which cannot lead to a solution ends earlier.

Our hypothesis is that, generally, an easy task does not require much
preparation. For example, standing up from a seat is much easier than
writing a scientific report which requires months of preparation, reading,
doing experiments, etc. Whereas standing up just needs a mind. So we use
this idea to assess whether a task is easy or not.

We define the preparation of a task as the actions satisfying the task’s
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before constraints. Easier to satisfy is the before constraints of a task, easier
is the task. Thus, in order to choose a non-primitive task, firstly, we extract
the before constraints of each task; then, for each non-primitive task t, we
get the minimum distance (explained in section subsection 4.3.2) from the
input initial state I of the planning problem to the set of before constraints
of t. Finally, among the set of the non-primitive tasks, we choose the task
whose minimum distance is the lowest: the lower the minimum distance is,
the easier the non-primitive task is to refine.

4.3.2 Estimating the distance between states

To get the distance, method cannot be used, since the search is between
two arbitrary states. The procedure to get minimum distance is similar to
classical planning, which searches in state-spaces.

But classical planning is complex and time-consuming, an intuitive re-
laxation idea is to neglect Effects−(a), but consider only Effects+(a).
Effects−(a) is the set of negative effects of action, Effects+(a) is the set
of positive effects. This simplifies γ(s, a) involves only a monotonic increase
in the number of propositions from s to γ(s, a) (As explained in section 2.2
γ: S × (A ∪ E) → 2S is a state translation function). Hence, it is easier to
compute distances to goals with such a simplified γ. The following heuristic
functions are based on this relaxation idea.

A First Approach

A first approach is as follows, p is a predicate, g is a state which contains a
set of predicates, ∆0(s, p) is the estimated distance from s to p, ∆0(s, g) is
from s to g.

∆0(s, p) = 0 if p ∈ s
∆0(s, p) = ∞ if ∀ a ∈ A, p 6∈ Effects+(a) and p 6∈ s
∆0(s, g) = 0 if g ⊆ s

Otherwise,
∆0(s, p) = mina{1+∆0(s, Precond(a)) | p ∈ Effects+(a)}
∆0(s, g) =

∑
p ∈ g

∆0(s, p)

If g ⊆ s or p ∈ s, which means the goal state is a subset of the goal
state, there is no need to do anything, since the goal state has already been
obtained, so ∆0 = 0.

If for a predicate p, there is no relevant operator (i.e. there is no action
whose effects include p), there is no way to satisfy p, so the distance is ∞.

Otherwise, when calculating ∆0(s, p), action a is performed to satisfy p,
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then a’s precondition must be satisfied, so this is a backward analysis from
a final predicate p to the initial state, only the path with the fewest actions
counts finally. ∆0(s, g) is the sum of ∆0(s, p) | p ∈ g.

However, this approach does not consider the fact that more than one
predicates in g can be satisfied with a single action, instead it uses the sum of
∆0(s, p). So the value of ∆0(s, g) can be overestimated, it is not admissible.

An Admissible Approach

We consider then, the algorithm to compute the real distance between two
states. The basic idea is the same as the backward search of classical plan-
ning. There are three cases:

∆∗(s, g) =


0, if g ⊆ s;

∞, if ∀ a ∈ A, a is not relevant for p ∈ g;

mina{1 + ∆∗(s, γ−1(g, a)) | a relevant for g}, otherwise.

If g ⊆ s, there is no need to do anything, ∆∗(s,g) = 0.

If for a predicate p ∈ g, there is no relevant operator (i.e. there is no
action whose effects include p), there is no way to achieve g, so the distance
is ∞.

Otherwise, we search for the shortest path from s to g. We use its inverse
function of γ, γ−1: g × a →sa where g is the result state of action a, sa is
the state in which a is performed to achieve g, sa = {g - Effects+(a)}

⋃
Precond(a). An action a is relevant for g means that there exists at least
one predicate pi, pi ∈ g and pi ∈ Effects+(a).

Through this approach, when a satisfies multiple predicates in g, all the
predicates are considered through γ−1. So we always get the real minimum
distance between two states, the distance is never overestimated, and the
approach is admissible.

A Complexity-Bounded Approach

The complexity of the admissible approach above is high when g contains a
big amount of predicates. To limit the complexity, we propose the following
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algorithm:

∆k(s, g) =



0, if g ⊆ s;

∞, if ∀ a ∈ A, a is not relevant for p ∈ g;

mina{1 + ∆∗(s, γ−1(g, a)) | a relevant for g}, if |g| ≤ k;

maxg′{∆k(s, g
′) | g′ ⊆ g and |g′| = k}, otherwise.

k is a predefined value, this algorithm is the same as the original version
when |g| ≤ k. If |g| > k ∧ ∆k(s, g) 6= 0 ∧ ∆k(s, g) 6= ∞, we analyze the
minimum distance from s to g′ , g′ ⊆ g and |g’| = k, all possible g′ will be
considered, the final result of the algorithm will be the maximal value of all
∆k(s, g

′). This algorithm returns an approximate value, but it still contains
much information, and we avoid searching in huge state-space but to search
in several smaller state-spaces, the complexity of the algorithm is bounded.

The algorithm of ∆k is used in our HTN planning system to analyse the
distance.

4.3.3 Conclusion

Learning from A* algorithm, we have proposed the heuristics to choose a
HTN, which help to find a good solution (with low length); through the
algorithm for estimating distance between states, we get an approach to
access a task is easy or not, so that an easy compound task can be chosen
to be refined, which help to find a solution more quickly. Both the choices
in algorithm 1 can be deterministic.

However, there are still a lot of work to do. There exists other possible
heuristics, for example, to choose the most constrained compound task firstly,
so that a flaw can be found as soon as possible, and a pruning can be done
earlier. We may work on such ideas in the following work. And our heuristics
are to be evaluated, whereas we are still working on the implementation of
the HTN algorithm, the base planning system of the heuristics has not been
finished, we are currently not able to evaluate the heuristics. In the following
chapter, my work on implementation will be introduced.
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Chapter 5

Implementation

The implementation of the heuristics must be based on the realisation of
the HTN algorithm. In our project, the HTN algorithm is a Phd student’s
work, however, we have faced up to a lot of difficulties in this part. So we
change the plan for my implementation work, I have participated in the HTN
algorithm realisation part and have prepared a HTN planning domain (as in
Appendix C).

5.1 PDDL4J

Our project has been based on the project PDDL4J[24]. PDDL4J is a plan-
ning system whose purpose is to facilitate the development of JAVA tools
for Automated Planning based on PDDL language.

PDDL4J’s work flow is as follows:

Figure 5.1: PDDL4J Flow Chart

The input of PDDL4J consists of a planning domain file and a planning
problem file, both the files are in PDDL. These files are parsed through a
parser within PDDL4J. The parsed information is represented in text format
and stored in strings. The strings are memory-consuming, and they cause
difficulties for following planning. So the preprocessing has been performed
to convert the information to integer format and then to bit format as in
Figure 5.1.

To represent the information in bit format (i.e. to store the information
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with bitset), we need to enumerate all the objects, all possible predicate
instances and task instances. For example, there are three objects A, B and C
in a blocksWorld planning problem, the possible instances of task insert(x, y)
includes: insert(A, B), insert(A, C), insert(B, A), insert(B, C), insert(C, A),
insert(C, B). Each of the task instances corresponds to a bit of the bitset for
storing tasks. The convertion from text to bit goes through integer format
for storing the correspondence between the string representations and bit
representations. So that when we finally get a solution in bit format, we can
still convert and output the solution in text format.

We have extended PDDL4J to support HTN planning. The work in-
cludes:

- extending PDDL language to support HTN planning,
- extending the parser to support HTN semantics in input files,
- extending the data structure in the program to support HTN planning,
e.g. methods, initial HTN, compound tasks, constraints, etc.

5.2 Algorithm Implementation

We have been implementing a HTN planning algorithm. The abstract HTN
planning procedure algorithm 1 is a simplified version of our implementation.
algorithm 1 has already been explained, in this section, we explain only the
different parts.

5.2.1 HTN Planning Algorithm

The HTN planning algorithm we have been implementing is given by algo-
rithm 3.

In line 1-2, we check if the input plan contains any ordering circle. A
circle in the ordering is illegal. As in Figure 5.2, in the HTN, we have
ordering constraints: B ≺ A, A ≺ C, C ≺ B. These orderings form a circle
which cause that we can never find an executable plan. If a circle exists,
there is no need to search, we return failure directly.

Figure 5.2: A HTN with a ordering circle
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Algorithm 3: HTN Planning Algorithm
Input: a planning problem P = (s0, w,O,M)
Output: solution plan

1 if CheckOrderCircle(w) then
2 return failure;

3 openList ← w;

4 while openList 6= ∅ do
5 p ← PopBestHTN(openList);
6 t ← SelectBestTask(p);

7 if t = NULL ∧ IsConstrSatisfied(p) = TRUE then
8 return p;

9 if t 6= NULL then
10 for each m ∈ GetRelevantMethods(t,D) do
11 newPlan ← Refine(t, m, p);
12 add newPlan to openList;

13 return failure;

In line 5, the function PopBestHTN implements the heuristics to pop a
HTN p from openList, the heuristics has been has been explained in sec-
tion 4.2. If the admissible heuristic h3 has been applied, a returned solution
is guaranteed to be the best solution.

In line 6, the function SelectBestTask implements the heuristics explained
in section 4.3, it returns a compound task t to refine. If the popped plan
p is already primitive (i.e. p contains no compound task), the function
SelectBestTask returns NULL.

in line 7-8, if t is NULL, the function IsConstrSatisfied checks if all the
state constraints of p have been satisfied. If p is indeed a solution, p will be
returned.

In line 10, the function GetRelevantMethods returns all the methods
whose relevant compound task is t, then each of these methods will be ap-
plied.

In line 11, the function Refine is called, it applies method m for refining
task t, then a new HTN is obtained, the variable newPlan stores the newly
obtained HTN. The details of function Refine will be discussed in subsec-
tion 5.2.2.
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5.2.2 Refining Algorithm

Our algorithm has been based on UMCP (explained in section 3.3), which
plans without exact world states, and without caring about tasks’ refining
ordering. The same as UMCP, our algorithm needs to verify HTNs’ con-
straints with uncertain world states caused by un-refined compound tasks.
During the planning process, some constraints are considered as promises
(i.e. promissory constraints), since there is not yet enough information to
verify it, a promissory constraint can only be verified until some necessary
compound tasks are refined.

The algorithm of the function Refine is given by algorithm 4.

Algorithm 4: Refining Algorithm
Input: Task: t, Method: m, Plan: p
Output: newPlan

1 newPlan ← p;
2 refinement ← GetRefinement(m, t);
3 precond ← GetPrecond(m, t);

4 AddConstr(newPlan, precond, t);
5 if IsConstrUnsatisfiable(precond, t, newPlan) then
6 return ∅;

7 MergeExpansion(newPlan, refinement);
8 TransferConstr(newPlan, t);
9 MergeConstr(newPlan, refinement);

10 RemoveTask(newPlan, t);

11 VerifyAllConstr(newPlan);
12 if IsConstrUnsatisfiable(newPlan) then
13 return ∅;

14 return newPlan;

The input of the Refining Algorithm includes:

- t: the task to refine;
- m: the method to apply;
- p: the original HTN.

In line 1, the variable newPlan is initialized as a copy of the input original
HTN p.

In line 2, the function GetRefinement(m, t) returns the compound task
t’s refinement (i.e. an instance of method m’s associated refinement).
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In line 3, The function GetPrecond(m, t) returns the precondition in-
stance (a precondition is a group of predicates) of method m.

In line 4, the method’s precondition precond is converted to a before
constraint (precond,t), which is added to HTN newPlan.

In line 5-6, we check if the before constraint (precond,t) is unsatisfiable(i.e.
the constraint can never get satisfied), if so, the method m is not applicable,
the algorithm returns an empty set ∅.

Line 7-10 is the process of updating the original HTN as explained in
algorithm 1.

σ(newPlan, t,m) = ((U − {t}) ∪ expansion(m), C ′ ∪ constr(m))

Firstly, in line 7, we merge expansion(m) into newPlan; then, in line 8,
we traverse and update newPlan’s constraints C to C ′ according to the
labels of merged expansion(m), the modifications have been explained in
Page. 18; after the traversal of constraints, in line 9, we merge constr(m)
into newPlan; lastly, in line 10, the task t is removed from the HTN newPlan,
all the constraints which contain t will also be removed.

In line 11, all the constraints of newPlan are verified. In newPlan, the sets
of verified constraints, promissory constraints and unsatisfiable constraints
are updated. A constraint is verified only if it is satisfied in every linearization
of the plan. On the contrary, a constraint is unsatisfiable if there exists
any linearization in which the constraint is unsatisfiable; it’s the same for
promissory constraint, even if a constraint is satisfied in all the linearization
except one in which it is promissory, then it is a promissory constraint.

In line 12-14, if the performed refining causes a unsatisfiable constraint
(i.e. there exists a unsatisfiable constraint in newPlan), the algorithm returns
∅. Otherwise, it returns newPlan.

5.2.3 Discussion

A difference between our implementation and the abstract HTN planning
procedure algorithm 1 is that in the implementation, we verify the constraints
each time after having refined a compound task; however, in algorithm 1,
the constraints are verified until a primitive HTN is obtained. We verify the
constraints early, so that we can prune the HTNs which can not lead to a
solution earlier.

SHOP’s (explained in section 3.3) performance is better than UMCP.
However we do not choose SHOP as the base of our algorithm, since SHOP
needs exact world state in each step to verify constraints and methods’ pre-
conditions. In another word, the planning process of SHOP is inherently a
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sequential process. On the contrary UMCP’s planning process introduces an
interest to be distributed.

Being based on UMCP, our algorithm still has some differences from
UMCP:

- Our algorithm use openList to store all the HTNs which possibly lead
to a solution. This allows us to implement the heuristics to improve
the search efficiency. In UMCP, the search is non-deterministic.

- In our algorithm, all relevant methods of a compound task are applied
when refining it. In another word, all possibilities are considered, so
there will not be any backtrack. Differently, in UMCP, a backtrack is
necessary when the search reaches a dead end. The backtrack causes
many difficulties, e.g. it is hard to decide which task to backtrack to.

- UMCP calls a function critics [5] for detecting and resolving the flaws
caused by interactions among tasks. critics repairs the flaws, or it
refuses the HTN if a flaw can not be repaired. UMCP considers only
a single HTN during the search, which makes the correctness of the
current HTN important. However, we do not apply critics. In our
algorithm, a group of HTNs are considered, which makes applying
critics meaningless.
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Chapter 6

Conclusion and Future Work

In this work, we have proposed a sound and complete abstract HTN plan-
ning procedure, and based on this procedure, we have proposed the heuris-
tics which help to find the best solution quickly. The heuristics work on
two choices of a HTN planning algorithm, they are based on A* algorithm
and minimum distance estimation algorithm respectively. For the imple-
mentation, we have discussed our work on HTN planning algorithm, which
introduces the interest to be distributed to support multiagents planning.

For the future work, we will finish the implementation of the HTN algo-
rithm, and evaluate the heuristics we proposed. Other heuristics which suit
for HTN planning are possible, we may make comparison with the heuristics
in this report. If possible, we will distribute the planning process of our
HTN planning algorithm, and extend the system to be a multiagents HTN
planning system.
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Appendix A

A PDDL BlocksWorld Domain

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)

)

(:action pickup
:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))

(not (clear ?x))
(not (handempty))
(holding ?x)

)
)

(:action putdown
:parameters (?x - block)
:precondition (holding ?x)
:effect
(and (not (holding ?x))

(clear ?x)
(handempty)
(ontable ?x)
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)
)

(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
:effect
(and (not (holding ?x))

(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)

)
)

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect
(and (holding ?x)

(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))

)
)

)
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Appendix B

A PDDL BlocksWorld Problem

(define (problem BLOCKS-4-0)
(:domain BLOCKS)
(:objects D B A C - block)
(:INIT (CLEAR C) (CLEAR A) (CLEAR B) (CLEAR D) (ONTABLE

C)
(ONTABLE A) (ONTABLE B) (ONTABLE D) (HANDEMPTY))
(:goal (AND (ON D C) (ON C B) (ON B A)))
)
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Appendix C

A HTN BlocksWorld Domain

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)

)

(:action pickup
:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect
(and (not (ontable ?x))

(not (clear ?x))
(not (handempty))
(holding ?x)

)
)

(:action putdown
:parameters (?x - block)
:precondition (holding ?x)
:effect
(and (not (holding ?x))

(clear ?x)
(handempty)
(ontable ?x)
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)
)

(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
:effect
(and (not (holding ?x))

(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)

)
)

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect
(and (holding ?x)

(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))

)
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(:method reverse
:parameters (?x - block)
:precondition(and (handempty) (on ?y ?x) (ontable ?x))
:expansion (

(tag a (reverse(?y)))
(tag b (pickup(?x)))
(tag c (stack(?x, ?y)))

)
:constraints(

(series a b c)
(after (and (handempty) (ontable ?x) (clear ?x) (clear ?y))

a)
)

)
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(:method reverse
:parameters (?x - block)
:precondition(and (handempty) (on ?y ?x) (on ?x ?z))
:expansion (

(tag a (reverse(?y)))
(tag b (unstack(?x, ?z)))
(tag c (stack(?x, ?y)))

)
:constraints(

(series a b c)
(after (and (handempty) (on ?x ?z)(clear ?x) (clear ?y)) a)

)
)

(:method reverse
:parameters (?x - block)
:precondition(and (handempty) (clear ?x) (on ?x ?y))
:expansion (

(tag b (unstack(?x, ?y)))
(tag c (putdown(?x)))

)
:constraints(

(series b c)
)

)

(:method reverse
:parameters (?x - block)
:precondition(and (handempty) (clear ?x) (ontable ?x))
:expansion (
)
:constraints(
)

)

(:method reverse
:parameters (?x - block, ?y - block)
:precondition(and (handempty) (on ?z, ?x) (clear ?y) (ontable

?x))
:expansion (

(tag a (reverse(?z, ?y)))
(tag b (pickup(?x)))
(tag c (stack(?x, ?z)))

)
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:constraints(
(series a b c)
(after (and (handempty) (ontable ?x) (clear ?x) (clear ?z)

(not (clear ?y))) a)
)

)

(:method reverse
:parameters (?x - block, ?y - block)
:precondition(and (handempty) (on ?z, ?x) (clear ?y) (on ?x ?j))
:expansion (

(tag a (reverse(?z, ?y)))
(tag b (unstack(?x, ?j)))
(tag c (stack(?x, ?z)))

)
:constraints(

(series a b c)
(after (and (handempty) (on ?x ?j) (clear ?x) (clear ?z) (not

(clear ?y))) a)
)

)

(:method reverse
:parameters (?x - block, ?y - block)
:precondition(and (handempty) (clear ?x) (clear ?y) (on ?x ?z))
:expansion (

(tag b (unstack(?x, ?z)))
(tag c (stack(?x, ?y)))

)
:constraints(

(series b c)
)

)

(:method reverse
:parameters (?x - block, ?y - block)
:precondition(and (handempty) (clear ?x) (clear ?y) (ontable

?x))
:expansion (

(tag b (pickup(?x)))
(tag c (stack(?x, ?y)))

)
:constraints(

(series b c)
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)
)

(:method insert
:parameters (?x - block, ?y - block)
:precondition(and (clear ?x) (handempty) (ontable ?x) (on(?z,

?y)))
:expansion (

(tag a (reverse(?z)))
(tag b (pickup(?x)))
(tag c (stack(?x, ?y)))
(tag d (reverse(?z, ?x)))

)
:constraints(

(series a b c d)
(after (and (clear ?y) (ontable ?x) (handempty)) a)
(after (and (on ?x ?y) (on ?z ?x)) d)

)
)

(:method insert
:parameters (?x - block, ?y - block)
:precondition(and (clear ?x) (handempty) (on ?j ?x) (on(?z,

?y)))
:expansion (

(tag a (reverse(?z)))
(tag b (unstack(?x, ?j)))
(tag c (stack(?x, ?y)))
(tag d (reverse(?z, ?x)))

)
:constraints(

(series a b c d)
(after (and (clear ?y) (on ?j ?x) (handempty)) a)
(after (and (on ?x ?y) (on ?z ?x)) d)

)
)

(:method Clear
:parameters (?x - block)
:precondition(and (not (clear ?x)) (handempty))
:expansion (

(tag b (reverse(?x)))
)
:constraints(
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(after (clear ?x) b)
)

)

(:method Clear
:parameters (?x - block)
:precondition(and (handempty) (on ?y ?x) (on ?x ?z))
:expansion (

(tag a (Clear(?y)))
(tag b (unstack(?x, ?z)))
(tag c (putdown(?x)))

)
:constraints(

(series a b c)
(after (and (handempty) (clear ?x) (on ?x ?z)) a)

)
)

)
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